An improved robust topology optimization approach using multiobjective evolutionary algorithms
نویسندگان
چکیده
Robust topology optimization has gained importance during the last years. This paper presents a robust approach to topology optimization using multiobjective evolutionary algorithms. A key contribution of our approach is that our optimization model handles structural robustness through the first two objectives, namely, the expected compliance and its variance; whereas a third objective incorporates the volume of the structure and tackles the sizing optimization problem. Finally, a major contribution of the proposed approach is that it returns a Pareto frontier showing the designer an array of possible solutions and unveiling the existing tradeoff between the different problem objectives, namely the expected compliance, variance of compliance, and volume of the structure. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
A Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks
Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملSatellite Conceptual Design Multi-Objective Optimization Using Co Framework
This paper focuses upon the development of an efficient method for conceptual design optimization of a satellite. There are many option for a satellite subsystems that could be choice, as acceptable solution to implement of a space system mission. Every option should be assessment based on the different criteria such as cost, mass, reliability and technology contraint (complexity). In this rese...
متن کاملOPTIMAL DESIGN OF REINFORCED CONCRETE ONE-WAY RIBBED SLABS USING IMPROVED TIME EVOLUTIONARY OPTIMIZATION
In this paper, a new robust metaheuristic optimization algorithm called improved time evolutionary optimization (ITEO) is applied to design reinforced concrete one-way ribbed slabs. Geometric and strength characteristics of concrete slabs are considered as design variables. The optimal design is such that in addition to achieving the minimum cost, all design constraints are satisfied under Amer...
متن کامل